Wednesday, June 12, 2024

Principal Geodesic Analysis

Target audience: Advanced
Estimated reading time: 7'

Principal Component Analysis (PCA) is essential for dimensionality and noise reduction, feature extraction, and anomaly detection. However, its effectiveness is limited by the strong assumption of linearity. 
Principal Geodesic Analysis (PGA) addresses this limitation by extending PCA to handle non-linear data that lies on a lower-dimensional manifold.





       Tangent PCA
       Setup
       Euclidean PCA


What you will learn: How to implement principal geodesic analysis as extension of principal components analysis on a manifolds tangent space.

The complete article, featuring design principles, detailed implementation, in-depth analysis, and exercises, is available in Hands-on Principal Geodesic Analysis  Hands-on Principal Geodesic Analysis



Notes

  • Environments: Python  3.10.10, Geomstats 2.7.0, Scikit-learn 1.4.2
  • This article assumes that the reader is somewhat familiar with differential and tensor calculus [ref 1]. Please refer to our previous articles related to geometric learning [ref 234].
  • Source code is available at  Github.com/patnicolas/Data_Exploration/manifolds
  • To enhance the readability of the algorithm implementations, we have omitted non-essential code elements like error checking, comments, exceptions, validation of class and method arguments, scoping qualifiers, and import statements.

Introduction

This article is the ninth installments of our ongoing series focused on geometric learning. As with previous articles, we utilize the Geomstats Python library [ref5] to implement concepts associated with geometric learning.

NoteSummaries of my earlier articles on this topic can be found in the Appendix

As a reminder, the primary goal of learning Riemannian geometry is to understand and analyze the properties of curved spaces that cannot be described adequately using Euclidean geometry alone. 

This article revisits the widely used unsupervised learning technique, Principal Component Analysis (PCA), and its counterpart in non-Euclidean space, Principal Geodesic Analysis (PGA).
The content of this article is as follows:
  1. Brief recap of PCA
  2. Overview of key components of differential geometry
  3. Introduction to PCA on tangent space using the logarithmic map
  4. Implementation in Python using the Geomstats library

   Principal components

    Principal component analysis

Principal Component Analysis (PCA) is a technique for reducing the dimensionality of a large dataset, simplifying it into a smaller set of components while preserving important patterns and trends. The goal is to reduce the number of variables of a data set, while preserving as much information as possible.

For a n-dimensional data, PCA tries to put maximum possible information in the first component c0, then maximum remaining information in the second c1 and so on.
Finally, we select the p << n top first components such as:\[\left \{ c_{i} :\ \ \sum_{i=1}^{p} c_{i} < T \ and \ \ c_{1} \geqslant c_{2} .... \geqslant c_{p} \right \}\]
The principal components are actually the eigenvectors of the Covariance matrix.
The first thing to understand about eigenvectors and eigenvalues is that they always appear in pairs, with each eigenvector corresponding to an eigenvalue. Additionally, the number of these pairs matches the number of dimensions in the data.

For instance, in a 3-dimension space, the eigenvalues are extracted from the following 3x3 symmetric Covariance matrix:\[\begin{bmatrix} cov(x, x)) & cov(x,y) & cov(x, z)\\ cov(x, y) & cov(y,y) & cov(y,z) \\ cov(x, z) & cov(y, z) & cov(z, z) \end{bmatrix}\] as cov(a, b) = cov(b, a).
The eigenvectors of the Covariance matrix (principal components) are the directions of the axes where there is the most variance (most information).
Assuming n normalized data points xi, the first principal component (with most significant eigenvalue) is defined as: \[P_{1}= arg\max_{||p||=1} \sum_{i=1}^{n} \left ( p.x_{i} \right )^{2} \ \ \ (1)\]where '.' is the dot product.


Differential geometry

Extending principal components to differentiable manifolds requires basic knowledge of differential and Riemann geometry introduced in previous articles [ref  2, 3, 4].

Smooth manifold
A smooth (or differentiable) manifold is a topological manifold equipped with a globally defined differential structure. Locally, any topological manifold can be endowed with a differential structure by applying the homeomorphisms from its atlas and the standard differential structure of a vector space.

Tangent space
At every point P on a differentiable manifold, one can associate a tangent space, which is a real vector space that intuitively encompasses all the possible directions in which one can move tangentially through P. The elements within this tangent space at P are referred to as the tangent vectors, tgt_vector at P
This concept generalizes the idea of a vector originating from a specific point in Euclidean space. For a connected manifold, the dimension of the tangent space at any point is identical to the dimension of the manifold itself.

Geodesics
Geodesics are curves on a surface that only turn as necessary to remain on the surface, without deviating sideways. They generalize the concept of a "straight line" from a plane to a surface, representing the shortest path between two points on that surface.
Mathematically, a curve c(t) on a surface S is a geodesic if at each point c(t), the acceleration is zero or parallel to the normal vector:\[\frac{d^{2}}{dt^{2}}c(t) = 0 \ \ or \ \ \frac{d^{2}}{dt^{2}}c(t).\vec{n}=\frac{d^{2}}{dt^{2}}c(t)\]
Fig. 1 Illustration of a tangent vector and geodesic on a sphere

Logarithmic map
Given two points P and Q on a manifold, the vector on the tangent space v from P to Q is defined as: \[\left \| log_{P}(Q) \right \| = \left \| v \right \|\]

Tangent PCA

On a manifold, tangent spaces (or plane) are local euclidean space for which PCA can be computed. The purpose of Principal Geodesic Analysis is to project the principal components on the geodesic using the logarithmic map (inverse exponential map).
Given a mean m of n data points x[i] on a manifold with a set of geodesics at m, geod, the first principal component on geodesics is defined as:\[\begin{matrix} P_{1}=arg\max_{\left \| v \right \| = 1}\sum_{i=1}^{n}\left \langle v.log_{m}\pi _{geod}(x_{i}) \right \rangle^{2} \\ \pi_{geod}(x_{i}) = arg\max_{g \in geod} \left \| log_{m}(x_{i})-log_{m}(g) \right \|^2 \end{matrix}\]
Fig. 2 Illustration of a tangent vector and geodesic on a sphere

The mean point on the data point x[I] on the manifold can be defined as either a barycenter or a Frechet Mean [ref 6]. Our implementation in the next section relies on the Frechet mean.

  Implementation

For the sake of simplicity, we illustrate the concept of applying PCA on manifold geodesics using a simple manifold, Hypersphere we introduced in a previous article, Differentiable Manifolds for Geometric Learning: Hypersphere

    Setup

Let's encapsulate the evaluation of principal geodesics analysis in a class HyperspherePCA. We leverage the class HyperphereSpace [ref 7] its implementation of random generation of data points on the sphere.

ff                                 # --- Code Snippet 1 -----

    from manifolds.hyperspherespace import HypersphereSpace
I   import numpy as np

  
    class HyperspherePCA(object):
  def __init__(self):
     self.hypersphere_space = HypersphereSpace(equip=True)

  def sample(self, num_samples: int) -> np.array:
     return self.hypersphere_space.sample(num_samples)



    Euclidean PCA

First let's implement the traditional PCA algorithm for 3 dimension (features) data set using scikit-learn library with two methods:
  • euclidean_pca_components to extract the 3 eigenvectors along the 3 eigenvalues
  • euclidean_pca_transform to project the evaluation data onto 3 directions defined by the eigenvectors.
                                                  # --- Code Snippet 2 -----


     from sklearn.decomposition import PCA

   
    @staticmethod
    def euclidean_pca_components(data: np.array) -> (np.array, np.array):
   num_components = 3
   pca = PCA(num_components)
   pca.fit(data)
   return (pca.singular_values_, pca.components_)


    @staticmethod
    def euclidean_pca_transform(data: np.array) -> np.array:
   num_components = 3
   pca = PCA(num_components)
 
        return pca.fit_transform(data)

We compute the principal components on 256 random 3D data points on the hypersphere.

nu                                                  # --- Code Snippet 3 -----

     num_samples = 256
pca_hypersphere = HyperspherePCA()

# Random data on Hypersphere
data = pca_hypersphere.sample(num_samples)
eigenvalues, components = HyperspherePCA.
                                                     euclidean_pca_components(data)
transformed = pca_hypersphere.euclidean_pca_transform(data)        

print(f'\nPrincipal components:\n{components}')
print(f'Eigen values:{eigenvalues}\nTransformed data:\n{transformed}')

Output
Principal components:
[[ 0.63124842 -0.7752775  -0.02168467]
 [ 0.68247094  0.54196625  0.49041411]
 [ 0.36845467  0.32437229 -0.8712197 ]]
Eigen values: [9.84728751 9.0183337  8.65835924]

Important note: The 3 eigenvalues are similar because the input data is random.

    Tangent PCA on hypersphere 

The private method __tangent_pca computes principal components on the tangent plane using the logarithmic map. As detailed in the previous section, this implementation employs the Frechet mean as the base point on the manifold, which is the argument of the Geomstats method fit.

The method tangent_pca_components extracts the principal components computed using the logarithmic map. Finally the method tangent_pca_transform projects input data along the 3 principal components, similarly to its Euclidean counterpart, euclidean_pca_transform .

                                                    # --- Code Snippet 4 -----

      from geomstats.learning.pca import TangentPCA
from geomstats.learning.frechet_mean import FrechetMean


def tangent_pca_components(self, data: np.array) -> np.array:
    tgt_pca = self.__tangent_pca(data)
    return tgt_pca.components_

def tangent_pca_transform(self, data: np.array) -> np.array:
    tgt_pca = self.__tangent_pca(data)
    tgt_pca.transform(data)

    
def __tangent_pca(self, data: np.array) -> TangentPCA:
     sphere = self.hypersphere_space.space
     tgt_pca = TangentPCA(sphere)
       
          # We use the Frechet mean as center of data points 
          # on the hypersphere
     mean = FrechetMean(sphere, method="default")
     mean.fit(data)
          # Frechet mean estimate
     estimate = mean.estimate_
        
          # Invoke Geomstats fitting method for PCA on tangent plane
          tgt_pca.fit(data, base_point=estimate)
     return tgt_pca

    We evaluate the principal geodesic components on hypersphere using the same 256 points randomly generated on the hypersphere and compared with the components on the Euclidean space.

nu                                                      # --- Code Snippet 5 -----

     num_samples = 256
     pca_hypersphere = HyperspherePCA()
        
# Random data point generated on Hypersphere
data = pca_hypersphere.sample(num_samples)
        
_, components = HyperspherePCA.
                                              euclidean_pca_components(data)
tangent_components = pca_hypersphere.
                                              tangent_pca_components(data)
print(f'\nEuclidean PCA components:\n{components}'
     print(f'Tangent Space PCA components:\n{tangent_components}')

Output:
Euclidean PCA components:
[[ 0.63124842 -0.7752775  -0.02168467]
 [ 0.68247094  0.54196625  0.49041411]
 [ 0.36845467  0.32437229 -0.8712197 ]]
Tangent Space PCA components:
[[ 0.8202982  -0.45814582  0.34236423]
 [ 0.45806882  0.16783651 -0.87292832]
 [-0.34246724 -0.87288792 -0.34753831]]


Monday, June 3, 2024

Riemannian Geometry Cheat sheet

Target audience: Beginner
Estimated reading time: 3'
A visual overview of Riemannian geometry for everyone.

Riemannian geometry is core component of geometric learning that tackles the challenges of high-dimensional, densely packed but limited data, and complex distributions. Riemannian geometry provides a solution by helping data scientists understand the true shape and distribution of data.


Follow me on LinkedIn

Riemannian geometry provides data scientists with a mathematical framework facilitates the creation of models that are accurate and complex by leveraging geometric and topological insights.

References

Here is the list of published articles related to geometric learning:


--------------------------------------
Patrick Nicolas has over 25 years of experience in software and data engineering, architecture design and end-to-end deployment and support with extensive knowledge in machine learning. 
He has been director of data engineering at Aideo Technologies since 2017 and he is the author of "Scala for Machine Learning", Packt Publishing ISBN 978-1-78712-238-3 
and Geometric Learning in Python Newsletter on LinkedIn.

Monday, May 13, 2024

Logistic Regression on Riemann Manifolds

Target audience: Advanced
Estimated reading time: 6'

Traditional linear models in machine learning, such as logistic regression, struggle to grasp the complex characteristics of data in very high dimensions. 
Symmetric Positive Definite manifolds improve the output quality of logistic regression by enhancing feature representation in a lower-dimensional space.



Table of Contents

        Logistic regression
        SPD manifolds
        Logarithmic map
        Setup
        Data generation
        Manifold creation
        Euclidean space
\

What you will learn: How to implement and validate a binary logistic regression classifier on SPD manifolds using affine invariant and log Euclidean metrics.


Wednesday, May 1, 2024

K-means on Riemann Manifolds

Target audience: Advanced
Estimated reading time: 7'

Traditional clustering models often fail complex datasets commonly found in advanced applications like medical imaging, 3D shape analysis, and natural language processing where data is highly interrelated.
K-means on manifolds respects the intrinsic geometry of the data, such as curvature and metric.



       Setup
       Euclidean space
       Hypersphere


What you will learn: How to apply k-means clustering on a Riemann manifold (Hypersphere) using Geomstats, contrasted with its implementation in Euclidean space, using scikit-learn library.

Notes

  • Environments: Python  3.10.10, Geomstats 2.7.0, Scikit-learn 1.4.2, Matplotlib 3.8.3
  • This article assumes that the reader is somewhat familiar with differential and tensor calculus [ref 1]. Please refer to our previous articles related to geometric learning [ref 2, 3, 4].
  • Source code is available at  Github.com/patnicolas/Data_Exploration/manifolds
  • To enhance the readability of the algorithm implementations, we have omitted non-essential code elements like error checking, comments, exceptions, validation of class and method arguments, scoping qualifiers, and import statements.

Introduction

The primary goal of learning Riemannian geometry is to understand and analyze the properties of curved spaces that cannot be described adequately using Euclidean geometry alone. Riemannian geometry enables to describe the geometric structures of manifolds equipped with a metric, which defines the concept of distance and angle on these spaces.

This article is the seventh part of our ongoing series focused on geometric learning. In this installment, we utilize the Geomstats Python library [ref. 5] and explore the ubiquitous K-means clustering algorithm on the hypersphere manifold. The hypersphere which was introduced in a previous piece, Geometric Learning in Python: Manifolds - Hypersphere  and is detailed in the Geomstats API [ref. 6]. 

I highly recommend watching the comprehensive series of 22 YouTube videos Tensor Calculus - Eigenchris  to familiarize yourself with fundamental concepts of differential geometry. 
Summaries of my earlier articles on this topic can be found in the Appendix

There are many benefits for clustering data on a manifold for complex data sets [ref 7]:
  • Grouping of dense, continuous non-linear data depends on the 'shape' of data
  • Projection to Euclidean space may introduce distortion
  • Loss, distances are better assessed and computed through geodesics than Euclidean metrics (i.e. sphere)

K-means


Among the array of unsupervised learning algorithms, K-means stands out as one of the most well-known. This algorithm has a straightforward goal: to divide the data space so that data points within the same cluster are as similar as possible (intra-cluster similarity), and data points in different clusters are as dissimilar as possible (inter-cluster similarity). K-means aims to identify a predetermined number of clusters in an unlabeled dataset. It employs an iterative approach to finalize the clustering, which depends on the number of clusters specified by the user (denoted by the variable K).

Given K, Ck clusters each with a centroid mk, the input data xi is distributed across the cluster so to minimize the reconstruction error:\[Rerr(K)=\max_{C_k}\sum_{k=1}^{K}\sum_{x_i\in C_k}^{}\left \| x_i-m_k\right \|^2\]

Clustering data on a manifold

To assess and contrast the k-means model in both Euclidean space and on a hypersphere, it's necessary to create clustered data. This involves a two-step process:
  1. Generate a template cluster by employing a random generator on the manifold.
  2. Generate 4 clusters from the template using a special orthogonal Lie group in 3-dimensional space, SO(3).

Randomly generated manifold data

Let's evaluate and compare the following random generators for data points on the hypersphere we introduced in a previous article [ref 8]
  • Uniform distribution
  • Uniform distribution with constraints
  • von Mises-Fisher distribution

Uniform distribution
We start with the basic random uniform generator over interval [0, 1].\[r=rand_{[0,1]}(x)\]. The data points for the 4 clusters are visualized in the following plot.
4-Cluster random generation using uniform distribution


Constrained uniform random generator.
In this scenario, we constrain random values r on each of the 3 dimension (or axis) within a sub-interval [ai, bi].\[r=rand_{[0,1]}(x)\ \ \ a_i < r_i < b_i\]

4-Cluster random generation using constrained uniform distribution

von mises-Fisher random generator
This approach relies on a generative mixture-model approach to clustering directional data based on the von Mises-Fisher distribution [ref 9].
Given a d-dimensional unit random vector x on a hypersphere of dimension d-1, the d-variate von Moses-Fisher distribution is defined by the following probability density distribution:\[f(x|\mu , \kappa )=C_d(\kappa).e^{\kappa \mu^Tx} \ \ \  \ C_d(\kappa)=\frac{\kappa^{\frac{d}{2}-1}}{2\pi^{\frac{d}{2}}I_{\frac{d}{2}-1}(\kappa)}\]Id is the Bessel function and Cd is the normalization factor.

I
4-Cluster random generation using Von Mises-Fisher distribution

As anticipated, using a pure uniform random generator distributes data evenly across the hypersphere, rendering it ineffective for evaluating KMeans.
Instead, we will employ the von Mises-Fisher distribution and a constrained uniform random generator to more effectively analyze the performance of KMeans on a Riemann manifold.

Synthetic clusters using SO(3)

We leverage the SO(3) Lie group to replicate the randomly generated cluster.

Although the discussion of Lie groups and special orthogonal group in 3-dimensional space is beyond the scope of this article, here is a short summary:
In differential geometry, Lie groups play a crucial role by connecting the concepts of algebra and geometry. A Lie group is a mathematical structure that is both a group and a differentiable manifold. This means that the group operations of multiplication and taking inverses are smooth (differentiable), and it allows the application of calculus within the group structure.

The Special Orthogonal Lie group in 3-dimension space SO(3) is simply a group of 3 x 3 orthogonal matrices with determinant = 1. These represent rotation in
n-dimensional space and form a compact Lie group.

Implementation

Setup 

Let's wraps the random generators and k-means training methods in a class, KMeansOnManifold.
The von Mises-Fisher generator for the data in the initial cluster is initialized with a mean, _mu and a kappa arbitrary value. The constrained uniform random generator, accepts random values in each dimension x: [-1, -0.35], y: [0.3, 1] and z: [-1. 0.4].
The SO(3) Lie group is initialized without metric (equip=False) to generate the 4 synthetic clusters.

                                 # ---- Code Snippet  1 --------

from geomstats.geometry.hypersphere import Hypersphere
from geomstats.geometry.special_orthogonal import SpecialOrthogonal

class KMeansOnManifold(object):
   def __init__(self, 
                      num_samples: int, 
                      num_clusters: int, 
                      random_gen: AnyStr):
     # Step 1: Initialize the manifold
     self.hypersphere = Hypersphere(dim=2, equip=True)

     # Step 2: ingle cluster with random data points on hypersphere
     match random_gen:
        case 'random_von_mises_fisher':
             # Select a pivot or mean value
             _mu = self.hypersphere.random_uniform(n_samples=1)
             # Generate the cluster
             cluster = self.hypersphere.random_von_mises_fisher(
                      mu=_mu[0], 
                      kappa=60, 
                      n_samples=num_samples, 
                      max_iter=200)
        case 'random_riemann_normal':
             cluster = self.hypersphere.random_riemannian_normal(
                                        n_samples=num_samples, 
                                        max_iter=300)
        case 'random_uniform':
            cluster = self.hypersphere.random_uniform(
                                         n_samples=num_samples
                            )
        case 'constrained_random_uniform'
            # Generate random values with constrains on each dimension.
            y = [x for x in self.hypersphere.random_uniform(
                                       n_samples=100000)
                     if x[0] <= -0.35 and x[1] >= 0.3 and x[2] <= -0.40]
            cluster = np.array(y)[0:num_samples]
        case _:
            raise ValueError(f'{random_gen} generator is not supported')
        
     # Step 3: Generate other clusters using SO(3) manifolds
     so3_lie_group = SpecialOrthogonal(3, equip=False)
     # Generate the clusters
     self.clusters = [cluster @ so3_lie_group.random_uniform() 
                                                      for _ in range(num_clusters)]



Data in Euclidean space

The data class, KMeansCluster encapsulates the output (centroid and label) of the training of the k-means algorithm on the synthetic clustered data.

                                 # ---- Code Snippet  2 --------

@dataclass
class KMeansCluster:
    center: np.array
    label: np.array

We rely k-means implementation in scikit-learn library [ref 10] (class KMeans) on the  to identify the clusters in the Euclidean space, selecting the elkan algorithm, and k-means++ initialization.

                                     # ---- Code Snippet  3 --------

def euclidean_clustering(self) -> List[KMeansCluster]:
   from sklearn.cluster import KMeans

   kmeans = KMeans(
       n_clusters=len(self.clusters), 
       init='k-means++', 
       algorithm='elkan',
       max_iter=140)
  
   # Create a data set from points in clusters
   data = np.concatenate(self.clusters, axis=0)
   kmeans.fit(data)

   # Extract centroids and labels
   centers = kmeans.cluster_centers_
   labels = kmeans.labels_

   return [KMeansCluster(center, label) for center, label 
                                                   in zip(centers, labels)]


Output:
Cluster Center: [ 0.56035023 -0.4030522   0.70054776], Label: 0
Cluster Center: [-0.1997325  -0.38496744  0.8826764 ], Label: 2
Cluster Center: [0.04443849 0.86749237 0.46118632], Label: 3
Cluster Center: [-0.83876485 -0.45621187  0.23570083], Label: 1

Clearly, this implementation of k-means was not able to identify the proper clusters

Data on hypersphere

The methods to train k-means on the hypersphere uses the same semantic as its sklearn counterpart. It leverage the Geomstats, RiemannianKMeans class method.

                                     # ---- Code Snippet  4 --------

def riemannian_clustering (self) -> List[KMeansCluster]:
    from geomstats.learning.kmeans import RiemannianKMeans

    # Invoke the Geomstats Riemann Means
    kmeans = RiemannianKMeans(space=self.hypersphere, 
                                                      n_clusters=len(self.clusters))
    
    # Build the data set from the clustered data points
    data = gs.concatenate(self.clusters, axis =0)
        
    kmeans.fit(data)

    # Extract predictions, centroids and labels
centers = kmeans.centroids_ labels = kmeans.labels_ return [KMeansCluster(center, label) for center, label 
              in zip(centers, labels)]


Similar to k-means in Euclidean space, we identify the centroids for 4 clusters using 500 randomly generated samples.

                                     # ---- Code Snippet  5 ------

num_samples = 500
num_clusters = 4
kmeans = KMeansOnManifold(num_samples, 
                                                 num_clusters, 
                                                 'random_von_mises_fisher')
kmeans_cluster = kmeans.riemannian_clustering()


Output:
500 random samples on 4 clusters with von-mises-Fisher distribution
Cluster Center: [ 0.17772496 -0.36363422  0.91443097], Label: 2
Cluster Center: [ 0.44403679  0.06735507 -0.89347335], Label: 0
Cluster Center: [ 0.85407911 -0.50905801  0.10681211], Label: 3
Cluster Center: [ 0.90899637  0.02635062 -0.41597025], Label: 1

500 random samples on 4 clusters with constrained uniform distribution
Cluster Center: [-0.05344069 -0.91613807  0.3972847 ], Label: 1
Cluster Center: [ 0.6796575   0.39400079 -0.61873181], Label: 2
Cluster Center: [ 0.51799972 -0.67116261 -0.530299 ], Label: 0
Cluster Center: [ 0.49290501 -0.45790221 -0.73984473], Label: 3

Note: The labels are arbitrary indices assigned to each cluster for the purpose of visualization and validation against true labels.