Showing posts with label Geomstats. Show all posts
Showing posts with label Geomstats. Show all posts

Thursday, September 26, 2024

Introduction to SE3 Lie Groups in Python

Target audience: Advanced
Estimated reading time: 5'

After years of feeling daunted by Lie groups and algebras, I finally took the plunge into exploring these fascinating smooth manifolds. This article offers an introduction to the widely-used 3D Special Euclidean group (SE3).
Contents
       Lie manifolds
       Geomstats
       Components
       Inversion
       Composition
References
Appendix
Follow me on LinkedIn

What you will learn:  How to calculate an element of the 3D Special Euclidean group (SE3) from a given rotation matrix and translation vector in the tangent space, including the implementation of operations for computing the inverse and composition of SE3 group elements.

Notes

  • This post is a follow up on articles related to differential geometry and geometry learning [ref 1, 23 and 4] and introduction to 3-dimension Special Orthogonal group [ref 5].
  • Environments: Python 3.11,  Matplotlib 3.9, Geomstats 2.8.0, Numpy 2.1.2
  • Source code is available at  Github.com/patnicolas/Data_Exploration/Lie
  • To enhance the readability of the algorithm implementations, we have omitted non-essential code elements like error checking, comments, exceptions, validation of class and method arguments, scoping qualifiers, and import statement.

Disclaimer : A thorough tutorial and explanation of Lie groups, Lie algebras, and geometric priors for deep learning models is beyond the scope of this article. Instead, the following sections concentrate on experiments involving key elements and operations on Lie groups using the Geomstats Python library [ref 6].

Overview

Lie manifolds

smooth manifold is a topological space that locally resembles Euclidean space and allows for smooth (infinitely differentiable) transitions between local coordinate systems. This structure allows for the use of calculus on the manifold. 

The tangent space at a point on a manifold is the set of tangent vectors at that point, like a line tangent to a circle or a plane tangent to a surface.
Tangent vectors can act as directional derivatives, where you can apply specific formulas to characterize these derivatives.

Fig. 1 Manifold with tangent space and exponential/logarithm maps

In differential geometry, a Lie group is a mathematical structure that combines the properties of both a group and a smooth manifold. It allows for the application of both algebraic and geometric techniques. As a group, it has an operation (like multiplication) that satisfies certain axioms (closure, associativity, identity, and invertibility) [ref 7].
A 'real' Lie group is a set G with two structures: G is a group and G is a (smooth, real) manifold. These structures agree in the following sense: multiplication (a.k.a. product or composition) and inversion are smooth maps.
A morphism of Lie groups is a smooth map which also preserves the group operation: f(gh) = f(g)f(h) and f(1) = 1.
Fig. 2 Manifold with tangent space and identity and group element 
(Courtesy A. Kirillov Jr Department of Mathematics SUNY at Stony Brook)

Special Euclidean Group

The Euclidean group is a subset of the broader affine transformation group. It contains the translational and orthogonal groups as subgroups. Any element of SE(n) can be represented as a combination of a translation and an orthogonal transformation, where the translation B can either precede or follow the orthogonal transformation A,
The 3-dimension Special Euclidean group (SE3) is described as a 4x4 matrix as 
equation

A previous article, Special Orthogonal Lie group SO3 introduced the 3-dimension Special Orthogonal Lie group (SO3). How SE3 group differs from SO3?


Geomstats

Geomstats is a free, open-source Python library designed for conducting machine learning on data situated on nonlinear manifolds, an area known as Geometric Learning. This library offers object-oriented, thoroughly unit-tested features for fundamental manifolds, operations, and learning algorithms, compatible with various execution environments, including NumPyPyTorch, and TensorFlow (Overview Geomstats library).

The library is structured into two principal components:
  • geometry: This part provides an object-oriented framework for crucial concepts in differential geometry, such as exponential and logarithm maps, parallel transport, tangent vectors, geodesics, and Riemannian metrics.
  • learning: This section includes statistics and machine learning algorithms tailored for manifold data, building upon the scikit-learn framework.


Evaluation

The purpose of this section is to demonstrate that the inverse of a SE3 element and the composition of two SE3 elements belong to SE3 manifold. 

Components

We adopt the same object-oriented approach as used with the Special Orthogonal Group to describe the components and operations on the SE(3) manifold. The LieSE3Group class encapsulates the definition of the Special Euclidean group and its associated operations.
We specify three constructors:
  • __init__: Default constructor that create a new element in the SE3 manifold, group_element, using a 4x4 matrix as rotation+translation matrix on the tangent space.
  • build_from_numpyAlternative constructor with a 3x3 Numpy array list for the rotation matrix and 1x3 Numpy array for the translation vector on the tangent space 
  • build_from_vec: Alternative constructor with a 9 elements list for rotation matrix and a 3 elements list as translation vector on the tangent space 
import geomstats.backend as gs
from geomstats.geometry.special_euclidean import SpecialEuclidean



class LieSE3Group(object):
   dim = 3
   # Lie group as defined in Geomstats library
   lie_group = SpecialEuclidean(n=dim, point_type='matrix', epsilon=0.15, equip=False)
  
   # Support conversion of rotation matrix and translation vector to 4x4 matrix
   extend_rotation = np.array([[0.0, 0.0, 0.0]])
   extend_translation = np.array([[1.0]])

   
# Default constructor with 4x4 matrix on tangent space as argument
   def __init__(self, se3_element: np.array) -> None:
      self.se3_element = se3_element
      # Apply the exponential map to generate a point on the SE3 manifold
      self.group_element = LieSE3Group.lie_group.exp(self.se3_element)


  # Constructor with 3x3 numpy array for rotation matrix and  
  # 1x3 numpy array as translation vector on the tangent space 
  @classmethod
  def build_from_numpy(cls, rot_matrix: np.array, trans_matrix: np.array) -> Self:
      rotation_matrix = gs.array(rot_matrix)
      translation_matrix = gs.array(trans_matrix)
      se3_element = LieSE3Group.__build_se3_matrix(rotation_matrix, translation_matrix)
      
      return cls(se3_element)



  # Constructor with a 9 elements list for rotation matrix and  a
  # 3 elements list as translation vector on the tangent space 
@classmethod def build_from_vec(cls, rot_matrix: List[float], trans_vector: List[float]) -> Self: np_rotation_matrix = np.reshape(rot_matrix, (3, 3)) np_translation_matrix = LieSE3Group.__convert_to_matrix(trans_vector) return LieSE3Group.build_from_numpy(np_rotation_matrix, np_translation_matrix)

The method build_from_numpy invoked the private static method, __build_se3_matrix to build the 4x4 numpy array from the 3x3 rotation matrix and 1x3 translation vector. Its implemented is included in the appendix.


The generation of point on SE3 manifold uses a rotation around Z axis (rot_matrix) and a translation along each of the 3 axis (trans_vector).

rot_matrix = [1.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0]
trans_vector = [0.5, 0.3, 0.4]
print(f'\nRotation matrix:\n{np.reshape(rot_matrix, (3, 3))}')
print(f'Translation vector: {trans_vector}')

lie_se3_group = LieSE3Group.build_from_vec(rot_matrix, trans_vector)
print(lie_se3_group)
lie_se3_group.visualize_all(rot_matrix, trans_vector)

Output:
Rotation matrix:
[[ 1.  0.  0.]
 [ 0.  0. -1.]
 [ 0.  1.  0.]]

Translation vector: [0.5, 0.8, 0.6]
SE3 tangent space:
[[ 1.0  0.0  0.0  0.5]
 [ 0.0  0.0 -1.0  0.8]
 [ 0.0  1.0  0.0  0.6]
 [ 0.0  0.0  0.0  1.0]]
SE3 point:
[[ 2.718   0.000   0.000   1.359]
 [ 0.000   0.540  -0.841   0.806]
 [ 0.000   0.841   0.540   1.440]
 [ 0.000   0.000   0.000   2.718]]

The following plots illustrates the two inputs (rotation matrix and translation vector) on the tangent space and the resulting point on the SE3 manifold.



Fig 1. Visualization of 3x3 rotation matrix and 1x3 translation vector on SE3

Fig 2. Visualization of 4x4 matrix (point) on  SE3 manifold


Inversion

Let's validate that the inverse of an element on SE3 Lie group belongs to a SE3 group. The implementation, LieSE3Group method inverse, relies on the SpecialEuclidean.inverse method of Geomstats library.


def inverse(self) -> Self:
    inverse_group_point = LieSE3Group.lie_group.inverse(self.group_element)
    return LieSE3Group(inverse_group_point)


We reuse the 3x3 orthogonal rotation around Z axis (rot_matrix) with a new translation vector [0.5, 0.8, 0.6] on the SE3 tangent space to generate point on the manifold and its inverse.

rot_matrix = [1.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0]
trans_vector = [0.5, 0.8, 0.6]
lie_se3_group = LieSE3Group.build_from_vec(rot_matrix, trans_vector)
   
inv_lie_se3_group = lie_se3_group.inverse()
print(f'\nSE3 element\n{lie_se3_group}\nInverse\n{inv_lie_se3_group}')
lie_se3_group.visualize(inv_lie_se3_group.group_element, 'Inverse')

Input
SE3 tangent space:
[[ 1.0  0.0  0.0  0.5]
 [ 0.0  0.0 -1.0  0.8]
 [ 0.0  1.0  0.0  0.6]
 [ 0.0  0.0  0.0  1.0]]

SE3 point:
[[ 2.718   0.000   0.000   1.359]
 [ 0.000   0.540  -0.841   0.806]
 [ 0.000   0.841   0.540   1.440]
 [ 0.000   0.000   0.000   2.718]]

Inverse SE3 point
[[ 15.154    0.000   0.000  -26.738]
 [   0.000    1.143   1.279    -3.307]
 [   0.000   -1.279   1.143     1.125]
 [   0.000    0.000   0.000     2.718]]

The inverse on the SE3 manifold is visualizes in the following heatmap.

Fig 3. Visualization of inverse of a 4x4 matrix (point) on  SE3 manifold

Composition

The second key property of a Lie group on a manifold is that the composition of two group elements also belongs to the group. The product method in the LieSE3Group class performs this operation by composing the current 4x4 SE(3) matrix with another SE(3) element (denoted as lie_se3_group).


def product(self, lie_se3_group: Self) -> Self:
     composed_group_point = LieSE3Group.lie_group.compose(
                 self.group_element,  
                 lie_se3_group.group_element)
     return LieSE3Group(composed_group_element)


First test
Let's compose this SE3 element with itself.

rot_matrix = [1.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0]
trans_vector = [0.5, 0.8, 0.6]
se3_group = LieSE3Group.build_from_vec(rot_matrix, trans_vector)

# Composition of the same matrix
se3_group_product = se3_group.product(se3_group)
print(f'\nComposed SE3 point:\:{se3_group_product}')

SE3 tangent space:
[[ 7.389   0.000    0.000   7.389 ]
 [ 0.000  -0.416   -0.909   1.417]
 [ 0.000   0.909   -0.416    5.372]
 [ 0.000   0.000    0.000    7.389]]
Composed SE3 point:
[[ 1618.174    0.000     0.000  119568.075]
 [       0.000  40.518  -52.045       162.141]
 [       0.000  52.045   40.518        113.238]
 [       0.000    0.000     0.000      1618.174 ]]

Fig 4. Visualization of the composition of a 4x4 matrix (SE3 manifold point) with itself


Second test:
We compose a combine 3x3 rotation matrix (rotation around z axis) rot1_matrix and translation vector trans1_vector = [0.5, 0.8. 0.6] with a 3x3 rotation matrix (x axis), rot2_matrix and translation vector trans2_vector = [0.1, -0.3, 0.3].

rot1_matrix = [1.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0]
trans1_vector = [0.5, 0.8, 0.6]
se3_group1 = LieSE3Group.build_from_vec(rot1_matrix, trans1_vector)
print(f'\nFirst SE3 matrix:{se3_group1}')

rot2_matrix = [0.0, -1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0]
trans2_vector = [0.1, -0.3, 0.3]
se3_group2 = LieSE3Group.build_from_vec(rot2_matrix, trans2_vector)
print(f'\nSecond SE3 matrix:{se3_group2}')

se3_composed_group = se3_group1.product(se3_group1)
print(f'\nComposed SE3 matrix:{se3_composed_group}')

First SE3 matrix:
SE3 tangent space:
[[ 1.   0.   0.   0.5]
 [ 0.   0.  -1.   0.8]
 [ 0.   1.   0.   0.6]
 [ 0.   0.   0.   1. ]]
SE3 point:
[[ 2.718   0.000   0.000  1.359 ]
 [ 0.000   0.540  -0.841  0.806 ]
 [ 0.000   0.841   0.540  1.440 ]
 [ 0.000   0.000   0.000   2.718 ]]

Second SE3 matrix:
SE3 tangent space:
[[ 0.  -1.   0.   0.1]
 [ 1.   0.   0.  -0.3]
 [ 0.   0.   1.   0.3]
 [ 0.   0.   0.   1. ]]
SE3 point:
[[ 0.540  -0.841   0.000   0.351 ]
 [ 0.841   0.540   0.000  -0.386 ]
 [ 0.000   0.000   2.718   0.815 ]
 [ 0.000   0.000   0.000   2.718 ]]

Composed SE3 matrix:
SE3 tangent space:
[[ 7.389   0.000   0.000   7.389 ]
 [ 0.000  -0.416  -0.909  1.417 ]
 [ 0.000   0.909  -0.416   5.372 ]
 [ 0.000   0.000   0.000   7.389 ]]
SE3 point:
[[ 1618.177    0.000   0.000  11956.808 ]
 [       0.000    0.405  -0.520     162.141 ]
 [       0.000    0.520   0.405    1132.388 ]
 [       0.000    0.000   0.000    1618.177 ]]

The following diagram visualizes the two input SE3 group elements used in the composition, se3_group1, se3_group2  and the resulting SE3 element, se3_composed_group.

Fig 5. Visualization of two SE3 4x4 matrices input to composition

Fig 6. Visualization of the composition of two SE3 4x4 matrices

References




----------------------------------
Patrick Nicolas has over 25 years of experience in software and data engineering, architecture design and end-to-end deployment and support with extensive knowledge in machine learning. 
He has been director of data engineering at Aideo Technologies since 2017 and he is the author of "Scala for Machine Learning", Packt Publishing ISBN 978-1-78712-238-3 and Geometric Learning in Python Newsletter on LinkedIn.



Appendix

A simple class method to build a 4 x 4 matrix on SE3 tangent space, from a 3x3 rotation matrix and 1x3 translation vector.

@staticmethod
def __build_se3_matrix(rot_matrix: np.array, trans_matrix: np.array) -> np.array:
   extended_rot = np.concatenate([rot_matrix, LieSE3Group.extend_rotation], axis=0)
   extended_trans = np.concatenate([trans_matrix.T, LieSE3Group.extend_translation])
   
   return np.concatenate([extended_rot, extended_trans], axis=1)



Saturday, September 14, 2024

Lie Algebra on SO3 Groups in Python

Target audience: Advanced
Estimated reading time: 5'

Curious about manifolds and the SO(3) Lie group? 
Your next step is to explore its associated Lie algebra, which lies in the tangent space. This algebra is a linear space with the same dimension as the Lie group, closed under a bilinear alternating operation known as the Lie bracket. The Lie algebra of SO(3), denoted as so3, consists of all 3x3 skew-symmetric matrices.



What you will learn: How to compute SO3 rotation matrices from tangent vector and extract Lie algebra from points on SO3 manifolds.

Table of content
       Setup
       Lie bracket
Follow me on LinkedIn

Notes

  • This post is a follow up on a previous post on SO3 Lie groups [ref 1] and leverage articles related to differential geometry and geometry learning [ref 2, 3, 4 and 5]
  • Environments: Python 3.11,  Matplotlib 3.9, Geomstats 2.8.0
  • Source code is available at  Github.com/patnicolas/Data_Exploration/Lie
  • To enhance the readability of the algorithm implementations, we have omitted non-essential code elements like error checking, comments, exceptions, validation of class and method arguments, scoping qualifiers, and import statement.


Disclaimer : A thorough tutorial and explanation of Lie groups, Lie algebras, and geometric priors for deep learning models is beyond the scope of this article. Instead, the following sections concentrate on experimenting with the Lie Algebra on 3-dimension Special Orthogonal manifolds using the Geomstats Python library [ref 6].

Lie algebra on so3

As a reminder ....
smooth manifold is a topological space that locally resembles Euclidean space and allows for smooth (infinitely differentiable) transitions between local coordinate systems. This structure allows for the use of calculus on the manifold. 

The tangent space at a point on a manifold is the set of tangent vectors at that point, like a line tangent to a circle or a plane tangent to a surface.
Tangent vectors can act as directional derivatives, where you can apply specific formulas to characterize these derivatives.

Fig. 1 Manifold with tangent space and exponential/logarithm maps

A Lie algebra is a vector space g and a bilinear operator known as Lie bracket or 
Lie commutator defined as
equation
with the properties
  1. Anticommutative: [X,Y] = -[Y, X]
  2. Jacobi Identity: [[X,Y], Z] + [[Y,Z],X] + [[Z,X],Y] = 0
Examples
Let's consider the n-dimension General Linear Group on complex numbers 
GL(n, C) of n x n invertible matrices.
The Lie algebra is defined as
equation


The Special Orthogonal Group in 3 dimensions, SO(3) is the group of all rotation matrices in 3 spatial dimensions.
equation

The Lie bracket for the SO3 group is defined as the matrix commutator of two vectors 
X, Y on base point P.
[X, Y] = X.Y - Y.X

with the basis elements:
equation equation equation


Implementation

Setup

Geomstats is a free, open-source Python library designed for conducting machine learning on data situated on nonlinear manifolds, an area known as Geometric Learning. This library offers object-oriented, thoroughly unit-tested features for fundamental manifolds, operations, and learning algorithms, compatible with various execution environments, including NumPyPyTorch, and TensorFlow (Overview Geomstats library).

We leverage the class LieSO3Group defined in the previous article ( Operations on SO3 Lie Groups in Python - Implementation).

import geomstats.backend as gs
from geomstats.geometry.special_orthogonal import SpecialOrthogonal


class LieSO3Group(object):
    dim = 3
    # Lie group as defined in Geomstats library
    lie_group =  SpecialOrthogonal(n=dim, point_type='vector', equip=False)
    identity = gs.eye(dim)

    
    
    def __init__(self, tgt_vector: np.array, base_point: np.array = identity) -> None:
        self.tangent_vec = gs.array(tgt_vector)

        # Exp. a left-invariant vector field from a base point
        self.group_element = LieSO3Group.lie_group.exp(self.tangent_vec, base_point)
        self.base_point = base_point

    @classmethod
    def build(cls, tgt_vector: List[float], base_point: List[float] = None) -> 
        np_input = np.reshape(tgt_vector, (3, 3))

       np_point = np.reshape(base_point, (3, 3)) if base_point is not None 
                         else LieSO3Group.identity
       return cls(tgt_vector=np_input, base_point=np.array(base_point))


The Lie algebra for the Special Orthogonal Group SO3 for a given tangent vector and base point is implemented through the logarithmic map in the method lie_algebra using the SpecialOrthogonal.log method in Geomstats.

def lie_algebra(self) -> np.array:
   return LieSO3Group.lie_group.log(self.group_point, self.base_point)

Fig. 2 Visualization of SO3 Lie point and Algebra


The algebra matrix is computed from a given tangent vector for a +90 degrees rotation along X-axis (3 x 3 rotation matrix) of and a given base point in the SO3 manifold.


# First SO3 rotation matrix 90 degree along x axis
so3_tangent_vec = [1.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0]

# Base point is SO3 rotation matrix 90 degree along y axis
base_point = [0.0, 0.0, 1.0, 0.0, 1.0, 0.0, -1.0, 0.0, 0.0]

so3_group = LieSO3Group.build(
    tgt_vector=so3_tangent_vec, 
    base_point=base_point
print(so3_group)

lie_algebra = so3_group.lie_algebra()
assert np.array_equal(so3_group.tangent_vec, lie_algebra)

print(f'\nLie algebra:\n{lie_algebra}')

As expected the Lie algebra of the Lie group point is identical to the original tangent vector.
Tangent vector:
[[ 1.  0.  0.]
 [ 0.  0. -1.]
 [ 0.  1.  0.]]
Lie group point:
[[ 0.99  0.00  0.93]
 [ 0.00  0.93 -0.99]
 [-0.93  0.99 -0.00]]
Lie algebra:
[[ 1.00  0.00   0.00]
 [ 0.00  0.00 -1.00]
 [ 0.00  1.00  0.00]]

Projector operator

The Lie group projection operator approach is an iterative scheme usually applied to continuous-time optimal control problems on Lie groups. It is mentioned here for reference.

def projection(self) -> Self:
   projected = LieSO3Group.lie_group.projection(self.group_point)
   return LieSO3Group(projected)

We use the same tangent vector and base point on SO3 manifold to compute the projected matrix.

# First SO3 rotation matrix 90 degree along x axis
 so3_tangent_vec = [1.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0]

so3_group = LieSO3Group.build(tgt_vector=so3_tangent_vec, base_point=LieSO3Group.identity)
projected = so3_group.projection()
print(f'\nProjected point with identity:\n{projected.group_point}')

# Base point is SO3 rotation matrix 90 degree along y axis
base_point = [0.0, 0.0, 1.0, 0.0, 1.0, 0.0, -1.0, 0.0, 0.0]

so3_group = LieSO3Group.build(tgt_vector=so3_tangent_vec, base_point=base_point)
projected = so3_group.projection()
print(f'\nProjected point with\n{so3_group.tangent_vec}\n{projected.group_point}')

Projected point with identity:
[[ 2.00   0.00   0.00]
 [ 0.00   1.63  -0.77]
 [ 0.00   0.77   1.63]]

Projected point with base point
[[ 1.  0.  0.]
 [ 0.  0. -1.]
 [ 0.  1.  0.]]:
[[ 1.66   0.35  0.66]
 [ 0.35   1.57 -0.74]
 [-0.66   0.74  1.25]]

Lie Bracket

Finally, we compute the bracket for this tangent vector, self.tangent with another vector, other_tgt_vector.

def bracket(self,  other_tgt_vector: List[float]) -> np.array:
     np_vector = np.reshape(other_tgt_vector, (3, 3))
     return np.dot(self.tangent.vec, np_vector) - np.dot(np_vector, self.tangent_vec)


Let first try to compute the bracket of a SO3 point (skew matrix) with itself.


# First SO3 rotation matrix 90 degree along x axis
so3_tangent_vec = [1.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0]

so3_group = LieSO3Group.build(so3_tangent_vec)

 np.set_printoptions(precision=3)
 print(f'\nSO3 point\n{so3_groupA.group_element}')

 bracket = so3_groupA.bracket(so3_tangent_vec)
 print(f'\nBracket [x,x]:\n{bracket}')


Tangent vector:
[[ 1.  0.  0.]
 [ 0.  0. -1.]
 [ 0.  1.  0.]]

SO3 point
[[ 2.00  0.00   0.00]
 [ 0.00  0.93  -0.99]
 [ 0.00  0.99   0.93 ]]

Bracket [x,x]:
[[0. 0. 0.]
 [0. 0. 0.]
 [0. 0. 0.]]

Now Let's compute the Lie bracket of two tangent vectors, one for SO3 90 degrees rotation along X axis and the other along Y axis.



# First SO3 rotation matrix 90 degree along x axis
so3_tangent_vecA = [1.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0]
so3_groupA = LieSO3Group.build(so3_tangent_vecA)


# Second SO3 rotation matrix 90 degree along y axis
other_tgt_vec = [0.0, 0.0, 1.0, 0.0, 1.0, 0.0, -1.0, 0.0, 0.0]

bracket = so3_groupA.bracket(other_tgt_vec)
print(f'\nBracket:\n{bracket}')


Bracket:
[[ 0. -1.   1.]
 [ 1.  0.  -1.]
 [ -1. 1.   0.]]



References



----------------------------------
Patrick Nicolas has over 25 years of experience in software and data engineering, architecture design and end-to-end deployment and support with extensive knowledge in machine learning. 
He has been director of data engineering at Aideo Technologies since 2017 and he is the author of "Scala for Machine Learning", Packt Publishing ISBN 978-1-78712-238-3 and Geometric Learning in Python Newsletter on LinkedIn.