Target audience: Beginner
Estimated reading time: 3'
This post introduces the OpenAI ChatGPT API and describes an implementation in Scala for which the API key is encrypted.
Table of contents
Response body
The basic end user and comprehensive request structure implement the request parameters defined in the first section.
The request/response to/from ChatGPT service is implemented by the method apply which returns an optional ChatGPTResponse if successful, None otherwise
with the following output....
Thank you for reading this article. For more information ...
Notes:
- The code associated with this article is written using Scala 2.12.15
- To enhance the readability of the algorithm implementations, we have omitted non-essential code elements like error checking, comments, exceptions, validation of class and method arguments, scoping qualifiers, and import statements.
ChatGPT REST API
The ChatGPT functionality is accessible through a REST API [ref 1]. The client for the HTTP POST can be implemented
- as an application to generate the request including the JSON content and process the response (Curl, Postman, ...)
- programmatically by defining the request and response as self-contained data structure (class, data or case class, ...) to manage the remote service.
HTTP parameters
The connectivity parameters for the HTTP post are
- OPEN_AI_KEY=xxxxx
- URL= "https://api.openai.com/v1/chat/completions
- CONTENT_TYPE="application/json"
- AUTHORIZATION=s"Bearer ${OPEN_AI_KEY}"
Request body
The parameters of the POST content:
- model: Identifier of the model (i.e. gpt-3.5-turbo)
- messages: Text of the conversation
- user: Identifier for the user
- role: Role of the user {system|user|assistant}
- content: Content of the message or request
- name: Name of the author
- temperature: Hyper-parameter that controls the "creativity" of the language model by adjusting the distribution (softmax) for the prediction of the next word/token. The higher the value (> 0) the more diverse the prediction (default: 0)
- top_p: Sample the tokens with top_p probability. It is an alternative to temperature (default: 1)
- n: Number of solutions/predictions (default 1)
- max_tokens: Limit the number of tokens used in the response (default: Infinity)
- presence_penalty: Penalize new tokens which appear in the text so far if positive. A higher value favors most recent topics (default: 0)
- frequency_penalty: Penalize new tokens which appear in the text with higher frequency if the value is positive (default: 0)
- logit_bias: Map specific tokens to the likelihood of their appearance in the message
Note: Hyper-parameters in red are mandatory
Response body
- id: Conversation identifier
- object: Payload of the response
- created: Creation date
- usage.prompt_tokens: Number of tokens used in the prompt
- usage.completion_tokens: Number of tokens used in the completion
- usage.total_tokens Total number of tokens
- choices
- choices.message.role Role used in the request
- choices.message.content Response content
- choices.finish_reason Description of the state of completion of the request.
Scala client
The first step in implementing the client to ChatGPT API is to define the POST request and response data structure. We define two types of requests
- Simple user request, ChatGPTUserRequest
- Request with model hyper-parameters ChatGPTDevRequest which includes most of the parameters defined in the introduction.
We will be using the Apache Jackson serialization/deserialization library [ref 2] to convert request structure to JSON and JSON response into response object.
The handle to the serialization/deserialization, mapper, is defined and configured in the singleton ChatGPTRequest
The toJson method convert any chatGPT request into a JSON string that is then converted into an array of bytes in method toJsonBytes
trait ChatGPTRequest {
import ChatGPTRequest._
def toJson: String = mapper.writeValueAsString(this)
def toJsonBytes: Array[Byte] = toJson.getBytes
}
object ChatGPTRequest {
// Instantiate a singleton for the Jackson serializer/deserializer
val mapper = JsonMapper.builder().addModule(DefaultScalaModule).build()
mapper.registerModule(DefaultScalaModule)
mapper.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false)
}
The basic end user and comprehensive request structure implement the request parameters defined in the first section.
case class ChatGPTMessage(role: String, content)
case class ChatGPTUserRequest(model: String, messages: Seq[ChatGPTMessage])
extends ChatGPTRequest
case class ChatGPTDevRequest(
model: String,
user: String,
prompt: String,
temperature: Double,
max_tokens: Int,
top_p: Int = 1,
n: Int = 1,
presence_penalty: Int = 0,
frequency_penalty: Int = 1) extends ChatGPTRequest
The response, ChatGPTResponse reflects the REST API specification described in the first section. These classes have to be implemented as case classes to support serialization of object through the class loader.
For convenience we implemented two constructors for the ChatGPTClient class
case class ChatGPTChoice(
message: ChatGPTMessage,
index: Int,
finish_reason: String)
case class ChatGPTUsage(
prompt_tokens: Int,
completion_tokens: Int,
total_tokens: Int)
case class ChatGPTResponse(
id: String,
`object`: String,
created: Long,
model: String,
choices: Seq[ChatGPTChoice],
usage: ChatGPTUsage)
For convenience we implemented two constructors for the ChatGPTClient class
- A fully defined constructor taking 3 arguments: complete request url, timeout and an encrypted API key, encryptedAPIKey
- A simplified constructor with JSON timeout and encryptedAPIKey as arguments.
The request implementing the ChatGPTRequest trait is converted into bytes, pushed into the outputStream. In our example, we just throw an IllegalStateException exception in case the HTTP error code is not 200. A recovery handler (httpCode: Int) => ChatGPTRequest would be more useful.
import com.fasterxml.jackson.databind.json.JsonMapper
import com.fasterxml.jackson.databind.DeserializationFeature
import com.fasterxml.jackson.module.scala.DefaultScalaModule
import java.io.{BufferedReader, InputStreamReader, OutputStream}
import java.net.{HttpURLConnection, URL}
class ChatGPTClient(
url: String,
timeout: Int,
encryptedAPIKey: String
) {
import ChatGPTClient._
def apply(chatGPTRequest: ChatGPTRequest): Option[ChatGPTResponse] = {
var outputStream: Option[OutputStream] = None
try {
EncryptionUtil.unapply(encryptedAPIKey).map(
apiKey => {
// Create and initialize the HTTP connection
val connection = new URL(url).openConnection.asInstanceOf[HttpURLConnection]
connection.setRequestMethod("POST")
connection.setRequestProperty("Content-Type", "application/json")
connection.setRequestProperty("Authorization", s"Bearer $apiKey")
connection.setConnectTimeout(timeout)
connection.setDoOutput(true)
// Write into the connection output stream
outputStream = Some(connection.getOutputStream)
outputStream.foreach(_.write(chatGPTRequest.toJsonBytes))
// If request failed.... just throw an exception for now.
if(connection.getResponseCode != HttpURLConnection.HTTP_OK)
throw new IllegalStateException(
s"Request failed with HTTP code ${connection.getResponseCode}"
)
// Retrieve the JSON string from the connection input stream
val out = new BufferedReader(new InputStreamReader(connection.getInputStream))
.lines
.reduce(_ + _)
.get
// Instantiate the response from the Chat GPT output
ChatGPTResponse.fromJson(out)
}
)
}
catch {
case e: java.io.IOException =>
logger.error(e.getMessage)
None
case e: IllegalStateException =>
logger.error(e.getMessage)
None
}
finally {
outputStream.foreach(os => {
os.flush
os.close
})
}
}
}
val model = "text-davinci-003"
val user = "system"
val encryptedAPIKey = "8df109aed"
val prompt = "What is the color of the moon"
val timeout = 200
val request = ChatGPTUserRequest(model, user, prompt)
//
// Simply instantiate, invoke ChatGPT and print its output
val chatGPTClient = ChatGPTClient(timeout, encryptedAPIKey)
chatGPTClient(request).foreach(println(_))
with the following output....
The color of the moon is typically described as a pale gray or white. However, the appearance of the moon's color can vary depending on various factors such as atmospheric conditions, the moon's position in the sky,...
A simple encryption..
As mentioned in the introduction, a simple and easy way to secure access any remote service is to encrypt credentials such as password, keys...so they do not appear in clear text in configuration, properties files, docker files or source code.
Encryption is the process of applying a key to plain text that transforms that plain text into unintelligible (cipher) text. Only programs with the key to turn the cipher text back to original text can decrypt the protected information.
The javax.crypto java package [ref 3] provides developers with classes, interfaces and algorithms for cryptography.
Our code snippet relies on a cypher with a basic AES encryption scheme. The Apache commons code package is used to implement the base 64 encoder.
The method apply, in the following code snippet, initializes the cypher in encryption model to encrypt the raw API key prior its encoding in base64.
import javax.crypto.spec.{IvParameterSpec, SecretKeySpec}
import javax.crypto.Cipher
import org.apache.commons.codec.binary.Base64.{decodeBase64, encodeBase64String}
// Define the parameter of the cypher using AES encoding schemer
final val AesLabel = "AES"
final val EncodingScheme = "UTF-8"
final val key = "aesEncryptorABCD"
final val initVector = "aesInitVectorABC"
// Instantiate the Cypherr
val iv = new IvParameterSpec(initVector.getBytes(EncodingScheme))
val keySpec = new SecretKeySpec(key.getBytes(), AesLabel)
val cipher = Cipher.getInstance("AES/CBC/PKCS5Padding")
/**
* Encrypt a string or content using AES and Base64 bytes representation
* @param credential String to be encrypted
* @return Optional encrypted string
*/
def apply(clearCredential: String): Option[String] = {
cipher.init(Cipher.ENCRYPT_MODE, keySpec, iv)
val encrypted = cipher.doFinal(clearCredential.getBytes)
Some(encodeBase64String(encrypted))
}
The decryption method, unapply, reverses the steps used in the encryption
- initialize the cipher in decryption model
- decode encrypted API key
- apply the cipher (doFinal)
def unapply(encryptedCredential: String): Option[String] = {
cipher.init(Cipher.DECRYPT_MODE, keySpec, iv)
val decrypted = cipher.doFinal(decodeBase64(encryptedCredential)
Some(new String(decrypted))
}
Thank you for reading this article. For more information ...
References
Environments: Scala 2.12.15, JDK 11, Apache Commons Text 1.9, FasterXML Jackson 2.13.1
---------------------------
Patrick Nicolas has over 25 years of experience in software and data engineering, architecture design and end-to-end deployment and support with extensive knowledge in machine learning.
He has been director of data engineering at Aideo Technologies since 2017 and he is the author of "Scala for Machine Learning" Packt Publishing ISBN 978-1-78712-238-3
He has been director of data engineering at Aideo Technologies since 2017 and he is the author of "Scala for Machine Learning" Packt Publishing ISBN 978-1-78712-238-3
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.